code

2017年2月1日 星期三

Machine Learning筆記5 - Linear Regression

Regression

regression是預測出某個數值,藉由觀察蒐集到的data。

舉老忠實噴泉為例,我們搜集了data,x軸是每次噴發的持續時間長度,y軸是距離下一次噴發的等待時間:


Linear Regression

以上圖老忠實噴泉資料為例,我們直覺想像有一條直線貫穿整個data:


y = ax + b,以上圖來說可以寫成以下變數:

w1是斜率
w0是intercept,也稱為bias, shift, offset。


如果data是2D,而output仍然是1D,則我們相當於在3D空間中要把data fit到一個平面,平面的通式為ax+by+c = z:


Formal Regression Problem Definition

簡單來說,就是要找出一個regression function f,使得d-dimensional input vector可以被map到某一個實數,而這個function也是一樣有參數可以調整(稱為free variable w),我們要找出最適合的參數w來fit手邊的data。



這邊要注意的是 f(w)是linear function,但是f(x)不見得是!由於我們要learn的是free variable w,所以才稱為linear regression。


Linear Regression通式

(xi,yi)是我們的training data set,我們要一個objective function來找出w參數使得f(xi ; w)約等於yi。

一個常見的linear regression objective function為least square function:




沒有留言:

張貼留言